• affiliate@lemmy.world
    link
    fedilink
    arrow-up
    4
    ·
    1 month ago

    a consequence of the axiom of choice is that every set can be given a well ordering. and well orderings always have smallest elements, but they may not have largest elements.

    so there is someone who is the least gay, but there may not be a single person who is the most gay.

    • repungnant_canary@lemmy.world
      link
      fedilink
      arrow-up
      6
      ·
      1 month ago

      I’m not sure if I understand. There might not be the “fully” gay person but there is person(s) who is more gay than anyone else, thus making them gayest

      • affiliate@lemmy.world
        link
        fedilink
        arrow-up
        8
        ·
        1 month ago

        oops. you’re completely right. i forgot there are only a finite number of people on earth. there is a gayest person

    • Kogasa@programming.dev
      link
      fedilink
      arrow-up
      3
      ·
      1 month ago

      The axiom of choice doesn’t say one way or another whether the spectrum in “the standard order” (is there a standard definition of more/less gay?) is a well ordering, only that there is some well ordering.

      • affiliate@lemmy.world
        link
        fedilink
        arrow-up
        1
        ·
        1 month ago

        yeah this is true. i should have clarified a bit better that a well ordering wouldn’t give you a “least gay” person in that sense of the word. it would be more correct to say there is a well ordering ⊰, and so there is a “⊰”-least gay person. but of course a “⊰”-least gay person could be in the middle of that spectrum.

        but the number of people on earth is finite, so in fact the usual ordering is a well-ordering in this case. so i guess those two mistakes i made cancel each other out, and the axiom of choice isn’t even needed here.